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Abstract—A finite element procedure is developed for calculating the order and mode of singularities
at 3D vertices in anisotropic linear elastic solids and composites. It is an extension of the method
of Bazant and Estenssoro. although it differs from the latter in some essential aspects. [t is based
on a variational principle derived from the statement of virtual work on the surface of the unit
sphere surrounding the singularity. The sphere i1s divided into six-node spherical triangles. The
singularities of the spherical coordinates at the poles are avoided by coordinate transformations.
The three matrices of the quadratic eigenvalue problem are explicitly evaluated and used to advan-
tage. Real and complex eigenvalues and cigenvectors are calculated by inverse treppen iteration.
With a relatively small mesh, accuracy is to two decimal places. The method is capable of solving
any 3D and any 2D vertex singularity problem with reasonable accuracy and without any assump-
tions with regard to the behavior of displacements in the neighborhood of line singularities. [t is
quite robust and stable. Several examples and applications to practical problems are given. A
procedure to handle the incompressible case is discussed.

L INTRODUCTION

Singular asymptotic ficlds in lincar ¢lastic materials have been the subject of several inves-
tigations in recent years (Barsoum, 1988 ; Benthem, 1980 Bazant and Estenssoro, 1979
Somaratna and Ting, 1986; Ting ¢ al., 1985 and references to carlicr work contained
therein). A short history of the subject is given by Benthem (1979). The general mathematical
form of singularitics has been studied by Kondrat’ev (1968). For a discussion of topics
related to the application of the finite clement method to singularities see Strang and Fix
(1973).

We bricfly review the works relevant to the present study. Our concern is primarily
with three-dimensional stress singularities of the form

ria(0,¢;s),

where r is the distance from the singular vertex, the tensor 6(0, ¢ ; 5) determines angular
variation of the stress; 0 and ¢ are the spherical coordinates (see Fig. 1) and s is the order
of singularity which can be real or complex. The requirement that the strain-energy should
remain finite in the neighborhood of the vertex gives Re(s) < 3 (in the two-dimensional
case Re(s) < [; Re denotes the real part). For displacements to remain finite, one must
have Re (s) < 1.

Using a semi-analytic method, Benthem (1977) was able to calculate s at the vertex of
a quarter-infinite crack (Fig. 2a). He created a solution as an infinite series in the Papkovich-
Neuber stress functions with unknown coeflicients. Every term in the series satisfied the
boundary conditions on the crack surface. He satisfied the boundary conditions on the free
surface (the xy-plane) by setting the Fourier components of the solution equal to zero on
this surface, thereby obtaining an infinite sct of equations with zero right-hand sides. From
the condition that the determinant of this set (in truncated form) is zero the value of s was
calculated. This solution, although very complete, is rather complicated and hard to use.
Later (1980) he solved the same problem by the finite difference method. Even though
Benthem's results were subsequently verified by others and are believed to be accurate,
application of his method to more gencral problems appears to be difficult.

In an attempt to develop a more general method, Bazant (1974) and Bazant and
Estenssoro (1977, 1979) turned to the finite element technique. They formulated a weak
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Fig. 1. () Spherteat coordinates. (b) The cone and the shell.

variational principle for the angular variation of displacements on a unit sphere about the
singular point and discretized it by dividing the image of the region on the sphere onto the
O¢-plane in four-node quadrilateral finite elements. The convergence of their numerical
scheme, however, was rather slow; as a result they resorted to extrapolation to obtain
accurate answers. Later, Somaratna and Ting (1986) used the sume method but with cight-
node quadrilateral elements. These latter authors have reported a much faster rate of
convergence so that extrapolation was not necessary. They have also extended the method
to anisotropic materials.

As will be explained briefly here and becomes clearer in the following sections, Bazant
and Estenssoro’s procedure suffers from certain shortcomings which make its application
to some problems difficult, particularly to situations involving several lines of singularity.
By a line of singularity we mean a line every point of which is a singular point, for example
the crack front.

The problem of calculating the order of singularity reduces to an eigenvalue problem
for s with the eigenfunction represented by displacements or stresses on the unit sphere
surrounding the vertex. In discretizing, one can divide into finite elements either the -
plane or, directly, the surface of the unit sphere. If one divides the fp-plane into uniform
quadrilaterals, like Bazant and Estenssoro, the clement images on the sphere will be non-
uniform regions. where nonuniformity will be greatest at the poles. Consequently, the
effectiveness of elements near the poles will be much less than those at the equator. In other
words the elements will not be homogencous. Morcover, all the nodes on the (0 = and
0 = r lines in the plane will actually represent a single physical point on the sphere. While
the approach of Bazant and Estenssoro works for cases with one line singularity, it is not
applicable to problems with several such lines, especially when the region of interest contains
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Fig. 2. (a) Quarter infinite crack. (b, c) Image of finite element grids in the O¢-plane.

the poles. (An example of such a complex case is a grain vertex, where several anisotropic
crystals with different orientations meet at a point ; scc Ghahremani er «l., 1990). A single
linc of singularity can be arranged so that it passes through the poles and if it is traction
free, it can be treated as a circular with an infinitely small radius. However, this cannot be
done in general.

Besides, since the variational principle contains terms like l/sin 0 which become
unbounded at 0 =0, and ¢ = =, for elecments containing the poles, accurate numerical
integration is difficult. At the poles, the spherical coordinate system itself is singular.

The eigenvalue problem for i(= [ —s) is quadratic, i.e. of the form (K+AD+ A*M)x =
0. where K, D and M are square, nonsymmetric, banded matrices independent of A
(Bazant and Estenssoro, 1979). None of the authors mentioned seem to have evaluated
these matrices explicitly. To calculate 4 by an iterative eigenvalue search, it is necessary to
repeatedly evaluate K + AD + A°M for various 4 values. Obviously, calculating the matrices
K, D and M once and storing them saves a lot of computations.

In our method none of these difficulties arise. We have directly divided the surface of
the sphere into elements. This is more natural, but it makes the generation of mesh more
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complicated. The mesh generation and refinement is done automatically. To avoid the
singularity of the coordinate system at the poles, for every element we have used a local
spherical coordinate system in such a way that the center of the element is always close to
the point (# =n 2, ¢ = 2). Then by appropriate transformations, the matrices with
respect to a global coordinate system are calculated. Finally, we have separated the above
three matrices explicitly. [t turns out that it is necessary to decompose only K. The three
nonsymmetric matrices are stored in banded form. This is the only major storage require-
ment throughout the computations.

2. BASIC EQUATIONS

In this section we state and prove a variational principle for asymptotic fields at
singular points which holds for arbitrary nonlinear and anisotropic materials. It reduces to
that of Bazant and Estenssoro (1979) for isotropic elastic materials and to that of Somaratna
and Ting (1986) for elastic anisotropic materials.

At the vertex where singularity is expected to exist, we introduce spherical coordinates,
as shown in Fig. la. Let o be the stress tensor. We look for values of A(=1—s) such that
separable solutions of the following form can exist

e=r" 'a(0.¢) (n

where a(f. ) is the stress tensor on the unit sphere, i.c. at r = 1.0. In subsequent develop-
ments, only the components of the stress tensor on the unit sphere appear. Therefore, for
convenience, we drop the bars over 6 and its components.

Let § be a region on the unit sphere and T its boundary. Rays emanating from the
origin and passing through points on I form a cone (Fig. 1b). For the separable stress ficld
(1), the statement of virtual work over the surface S'is

J a'on, dS = (24+ I)J T'ou, dS + § T'ou, dl, (2)
A N r

for virtual displacement ficld
rou (0, ). 3)

Here du (0, ¢) is an arbitrary virtual displacement vector on the unit sphere. In the line
integral, T is the traction vector on the external surface of the cone at r = 1.0. The usual
summation rule is used for indices i,j = (1,2, 3). Directions 1, 2 and 3 correspond to
arbitrary coordinates. The variations d«,, are obtained by using (3) in the strain displacement
relations for small strains and then putting r = 1.0.

The meaning of each term in (2) can be explained as follows : Consider a thin spherical
shell of material which occupies the region between r and r+dr over S, as shown in Fig.
Ib. Its edge coincides with the cone mentioned above. If (2) is multiplied by dr, its left-hand
side becomes the internal virtual work for this region. On the right-hand side the first term
will represent the external virtual work over the top and bottom faces, and the second term
that on the edges.

We now prove (2). Let us first introduce the usual notation for the stress components
in spherical coordinates

[0'" =0, Oy =03, Opy =03, Uyp =04, O0O,p =05, Oy = Uﬁ]- @

and analogously lor strains, where for example &,, = £, and the engineering definition for
£ns 15 used. Substituting (1) into the equilibrium equations in terms of stresses in spherical
coordinates (Love. 1944, p. 91) and canceling =%, one obtains the three equations of
equilibrium in the form
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We will use these equations shortly in our proof.
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Let the displacements in the r. 0 and ¢ directions be u, ¢ and w, respectively. Next,
using eqn (3) in the strain-displacement relations (Love, 1944, p. 56) and then setting

r= 1, we get
dg, = Adu
(552 = (ju+6l’_g
5
dey = du+dv cot (H— 0
. oy .
dty = ;i#% dwy—dwcot
(5
Spg = +(/ — 1)ow
deg = duy+ (A= 1)or
where
) a0
( )il e -}0 + ( ].f# - 0{;} -

The left-hand side of (2) becomes

j (6,08, + -+ +0,08,)dS = J' fo,l0u+ - +oy[buy+(2—1)dv]} dS
A Ay

(6)

M

In this equation, as usual, we use Green’s theorem in the 0¢-plane, transfer the derivatives

from du, o and dw to the gs, and make use of (5). We get

24+ I)J. (o, 0u+oc,0c0+a0n)dS+ é (T.5u+Tydv+ T, dw) df,
AY

®

where, from (4), the coefficients of du, dv and dw in the surfuce integral are the traction

components on S. The coefficients in the line integral are

4 g,
sinf-o5 .

di
d¢ . do
Te = ¢, 7 Sin -0, 3
dé

de .
Ty =a, 37 50 0—o, ai

T,=G’(,

&)

It is easily seen that these are the three components of the traction vector acting on the
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boundary of the cone at r = 1.0. In (9). d( ).d/ is the derivative in the positive direction
with respect to the arc-length along I (Fig. 1b). Equation (2) is proved.

We give an interpretation of the first term in (8). On the top face of the above thin
shell. dS = (r+dr)°sin d9 d¢. From (1), (3) and (4). the external virtual work on this
face 1s

(r+dr)y>-! J (¢, 0u+6,0r+a:0w)sin ¢ dt) dep.
N

Writing a similar expression for the bottom face with negative sign, setting r = 1, adding
the two contributions, and keeping only infinitesimals of the first order, one gets the first
term of (8) multiplied by dr.

Although in our reasoning we used spherical coordinates, it is obvious that (2) holds in
an arbitrary coordinate system. It is also clear that this virtual work statement holds for
nonlinear as well as linear materials. For nonlinear materials, in (1) and (5). £ should be
replaced by A°, and in (2). 24, by A+ 4", In particular. for power law materials, where o« ¢,
A=l =n(s=1).

3. NUMERICAL RESULTS

A detailed explanation of the discretization of (2) is given in the Appendix. Here
we give four numerical examples: (1) the quarter infinite crack in isotropic materials,
(2) a transversely isotropic double cone inside an infinite transversely isotropic medium,
(3) cracks in laminated orthotropic composites and (4) a rectangular grain vertex, where
cight anisotropic crystals meet. In these cases s ts real. We only scarch for the cigenvalues
such that 0 < s < 1. More applications of this method can be found in Ghahremani er «of.
(1990). Muny situations involving complex cigenvalues are discussed in Ghahremani
and Shih (1990).

1. Quarter infinite crack

A quarter infinite crack is shown in Fig. 2a. Material is in the half-space = 2 0. The
crack front is the z-axis; the crack is in the vz-plane; the xy-plane is free, These are an
infinite number of cigenvalues and eigenvalues related to rigid body modes which we shall
not discuss, We only consider the first two largest eigenvalues, one of which is greater than
0.5, one less. The smaller one corresponds to symmetric displacements with respect Lo the
crack plane and was first calculated by Benthem (1977); the other corresponds to the
antisymmetric mode of deformation and was first calculated by Bazant and Estenssoro
(1979). Our finite element mesh is shown in Fig. 2b. The region 0 € 0 < n, 0 € p < mis
divided into spherical triangles. Because of symmetry, one can use only half of the mesh
which has 513 degrees of freedom. [t is found that crowding the elements close to the line
singularity increases the accuracy greatly. For the symmetric mode, at p = 0, onc must sct
u, = 0, and for the antisymmetric mode u, = w. = 0. As explained in the Appendix, the
traction boundary conditions at the free surface are automatically satisficd.

In Fig. 3. s is plotted against Poisson’s ratio v. Our results, the solid lines, agree with
the above-mentioned calculations to within [%. The values plotted as circles are taken
from Benthem (1980).

If one does not take advantage of the symmetry and uses the full mesh, no boundary
conditions need be imposed at all. In calculating the displacements, in order to verily that
the symmetric and antisymmetric modes actually exist, we used the full mesh and applied
no boundary conditions whatsoever. Free surface displacements (at ¢ = 0) are shown in
Fig. 4 for v = 0.3. They are normalized such that the maximum displacement is unity. For
comparison, displacements for plane strain modes [ and I and for mode IIT arc plotted.
From these. onc can conclude that the symmetric mode is very similar to mode 1. and the
antisymmetric displacement is a mixture of modes I and I11. Displacements of points on the
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Fig. 3. Order of singularity at the root of a quarter infinite crack as a function of Poisson’s ratio.
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crack plane (at ¢ = 90°) are also shown. For the symmetric mode, nonzero displacements at
6 = 90° show that the crack front is deflected upwards and compressed.

At the free surface mode III stresses cannot exist. For v = 0 the usual plane strain
solution satisfies the three-dimensional field equations and boundary conditions. Therefore
for v = 0, we must have s = 0.5 exactly. With the mesh shown we obtain s = 0.499. Fur-
thermore, the displacements and stresses should be a linear combination of those of modes
[ and II. with u. = 0. Our results (not shown here) confirm this accurately.

The question of the range of validity of the corner singularity fields has been studied
by Nakamura and Parks (1988a,b). For through cracks they have shown that these fields
dominate over a distance of about 3% of the thickness of thin plates.

As mentioned earlier. the present method is capable of solving any plane strain singu-
farity problem as well. For example. in Fig. 2a. for v = 0.3, putting 1. =0 at ¢ =0 (to
suppress mode I11) we calculated s = 0.50. The displacements were a linear combination of
modes [ and II. In order to suppress mode I, we imposed the additional conditions u, = 0
at (0 =0, ¢ =0)and at (§ = 2z, ¢ = 0). The displacements coincided almost exactly with
that of mode I. Then, instead of u, wesetu, = 0at (0 =0, ¢ = 0yand () = 2n. ¢ = 0). and
obtained the same eigenvalue but mode IT displacements. Inside the material, the largest
eigenvalue is s = 0.5 with three linearly independent eigenvectors, namely the three modes
I, IT and 1. On the surface, to the first dominant eigenvalue corresponds a single cigen-
vector, the antisymmetric mode ; and to the second eigenvalue, the symmetric.

3.2. Double cone

We now turn to anisotropic materials. Consider a transversely isotropic double cone
inside an infinite transversely isotropic material, as shown in Fig. 5. The moduli for the
cone and the infinite material are the same, but the orientations are different. For the double
cone, the axis of material symmetry is oriented along the X y-axis, while for the medium, at
every point it s parallel to the X, X -plane and passes through the X;-axis. The moduli for
transversely isotropic materials can be characterized by five constants (2, f8, 7. 3, &) (Walpole,

0.8 4

0.24

0.0 T T Y — T T T T 1
0.4 0.6 0.8 1.0 1.2 1.4 1.8 (R 2.0 2.2

CZZ/C‘Z’Z

Fig. 5. Singularity order for a transversely isotropic double cone in a transversely isotropic medium.
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1969). For Poisson’s ratio 0.3 and Young's modulus 1.0, we denote the isotropic moduli
by C) and the constants by (2. B. 7o. 00. &). Then we vary only x and calculate s. Because
of symmetry we analyzed only the region 0 < ¢ < 5°. All the nodes with identical = were
assigned the same degress of freedom. The displacements in the ¢-direction were set equal
to zero. The results are shown in Fig. 5.

Because of the axial symmetry. this problem can be solved by other completely different
methods. This was done, for example. in Ghahremani et a/. (1990). Since the results of the
two analyses were found to be almost entirely identical. we are convinced that the numerical
scheme works for anisotropic materials as well.

3.3 Laminated composites

The third example was first solved by Somaratna and Ting (1986). It is assumed that
a transverse crack is already present at the free surface of a laminated composite (Fig. 6a).
The shaded area in the xz-plane represents the crack plane. The crack front is along the z-
axis on the interface between the two layers. As in Somaratna and Ting the material of the
layers is T300/5208 graphite/epoxy. which is orthotropic. Referred to the material axis, the
elastic properties are

E, = E, = 1.54x 10° psi,
Ey =22.0x 10° psi,
G|2 = GZJ = G“ =0.81x lObpSi,
Vg = V3 = V33 = 028
where E, are the Young's moduli, G, the shear moduli and v, the Poisson’s ratios (Jones,

1975). The orientation of the material axes relative to xyz coordinates is specified by the
angle f which is different for the two layers.

TV
mx

024 200 e ® SOMARATNA AND TING

T T T 1
o 30 60 90 120 150 180

B
(b)

Fig. 6. (a) Crack in a laminated composite, xy-plane is free. (b) Singularity order.



1380 F. GHAHREMANI

The finite element grid is shown in Fig. 2c. No boundary condition was imposed at
all. Figure 6b shows the first two eigenvalues along with the results of Somaratna and Ting,
who calculated only the largest eigenvalue. As in Somaratna and Ting. the strongest
singularity occurs at 8, = 90 and §, = 0 . For this case. the free-surface displacements are
shown in Fig. 7. Displacements for (f, =90 .. =90 ). (f,=0.3,=9)and (§, =0,
f:=10"). which are not presented here. have the larger eigenvalue corresponding to the
antisymmetric mode and the smaller one to the symmetric mode. The notable exception is
the case shown in Fig. 7 where the larger eigenvalue is associated with the symmetric mode
and the smaller one with the antisymmetric mode. For other values of 8, and f, the
eigenvectors are neither symmetric nor antisymmetric.

3.4. Rectangular grain vertex

In the final example we constder a vertex where eight rectangular grains meet. Figure
8a shows one grain. It is assumed that each grain is a cubic crystal. By taking advantage
of symmetry. we analyzed just the region 0 < ¢ < w4, 0 < 0 < n/2. The [001] direction of
the crystal is oriented along the line with direction cosines (,/ 3/3. ﬁ/l ' 3/3). The [100]
direction is taken to be horizontal. The crystals in the other seven grains arc oriented
analogously. The symmetry boundary conditions are w =0 at ¢ =0 and ¢ = n/4, and

124 B1=90° 62=O° 5=685
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Fig. 7. Frec-surface displacements for crack in laminated composite, xy-plane is free. (@) First
cigenvalue. (b) Second eigenvaluc.
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Fig. 8. () Rectangular grain vertex where eight cubic crystals join at the origin and the image of
the finite clement grid on the #ep-pliane. (b) Order of singularity. Only one grain is shown.

r =0 at ¢ = nj2. For cubic materials, there are two non-dimensional constants, the ani-
sotropy tactor f'= 2C,,/(C,,—C,yand ¥ = C,2/(C,,+ C,,). The runge of fis (0, ). When
/=1, the material is isotropic. Figure 8b shows the results. For the orientation chosen, the
stresses are singular only in the range | < /< «c. It should be noted that in the most
realistic gcometry for grain vertex, four grains come to a corner and not cight (Ghahremani
et al., 1990).

4. THE INCOMPRESSIBLE CASE

The computer program devcloped here can be used for values of Poisson’s ratio as
large as 0.49. but it breaks down for strict incompressibility. We now describe a method
for handling this problem which holds for lincar and nonlinciar incompressible materials.

For small strains, incompressibility requires that the divergence of the displacement
field vanishes. For a separable displacement field of the form riu(0. ¢). re(0. ¢). w(0, ¢).
where 1, ¢ and w are the displaccments in the r, 0 and ¢ directions at r = 1.0, setting the
divergence equal to zero and solving for u gives
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1
u=——\|vy+rcotf+ —w .
/.+2< Y sin Hu'”>

This equation can be used to eliminate u from the variational principle altogether.
Application of this simple technique reduces the number of variables by one. a desirable
feature. but in the case of linear materials the resulting eigenvalue problem will be cubic
instead of quadratic. This, however, does not pose any difficulty. A method entirely anal-
ogous to the one explained in the Appendix for the quadratic eigenvalue problem can be
employed. For nonlinear materials, the eigenvalue problem and the equations will be fully
nonlinear.
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APPENDIX: DISCRETIZATION

Some general remarks about the implementation of the finite clement method were made in the Introduction.
In this section complete details will be given. We consider linear anisotropic materials. For all the cases considered
below, the line integral in (2) vanishes because either the traction vector or the displacements vanish on the
boundary of the cone. From (2), the variational principle simply becomes
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. a ) . a
J;{[aj +0,—a,(A+ )ou+o,duy+ ;:—oéu_,+(a, cot 8 —(A+2)o,Jov + 0.0ty + ;n—‘gév_,

=04 COtO—(A+2)0, 0w +a 0w, + ;;—oaw,} sinfdode =0. (Al)

This equation has terms involving 4°, 4 and no 4. These terms will now be explicitly separated.
From (1) and Hooke's law one can write

ru(f.¢). rr0.¢). rw(d. ¢) (A2)

for the three displacement components in the r, 6 and ¢ directions.
Substituting eqn (A2) into the strain—displacement relations, one gets

e =8 +4s', (A3)
where ¢ and ¢ have no 4 and
€ =0, £, = u.
g =u+r, ey =0,
B Yo ,
ey=u+vcotf+ —. &,=0
sin
v ,
& =" +wy—wcoth, & =0,
sing
Ue
3o W, gy = w,
' sing $
£y = y—0, gy = 0. (Ad)

Let C be the tensor of elastic moduli. From Hooke's law o = Cs = Cs” + AC#’, therefore,
a=a'+/lo, (AS)
where
a' =Cs’, o =C¢. (A6)

Using (AS) in (A1), the principle of virtual work can be written in full

s e ) e a,+io’s .
'[ {[a‘,’-{-ﬂ,‘ o +Aa\+ay—a\—a,)—-ia\ Pu+ (o, + Ao, )ou,+ ;in 0-3 Su,
Y
’ ’ 2 IPRTS s S a:*‘id;,
+[) cot 0 =20, + A(a' cot 0 =20, —a,)— A’ )b+ (a; + doy)dv, + o vy,
s e g1 o g o5 +4idy .
+[{—aicotl=2a,+i(—a,cot 020 —0)— A0 )ow+ (05 + Ao’ )dw, + pr dw,psinfdldg =0. (A7)

We divide the region on the unit sphere into finite clements, spherical triangles with six nodes (Fig. Ala).
The sides of the triangle are in most cases great circles, but this is not necessary. When it is convenient, we use
triungles with sides that are not great circles, The reasons for choosing this element are: (1) it has been suggested
that higher order elements may increase the accuracy (Bazant and Estenssoro, 1979): (2} it is casier to fill a region
with triangles ; (3) shape functions for these elements are “complete quadratic polynomials™ (Zienkiewicz, 1977).

Each element has 18 degrees of freedom (DOFs). For example DOFs 1, 2 and 3 correspond to u, v and w at
node one. In terms of the area coordinates L,. L, and L,, the shape functions are given by (Zienkiewicz, 1977)

N'=LQL, -1, N'=4L,L,,

N=L,(2L,=1), N*=4L,L,,

N'=L,(2L,—1), N*=4L,\L,. (A8)
Using the isoparametric concept and letting ¢ = ¢ sin 0, we have

0=NO, ¢=Ny (i=1-6), (A9)

where 0, and ¢, are the values of these variables at the nodes. The summation rule for repeated indices is used
here and throughout this paper. The reason for using ¢ rather than ¢ in (A9) is that, by comparison with known
results, it was found that this improves the accuracy.

The displacements inside a triangle are given by

S38 17-11-¢
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X3

(a)

(b)

Fig. AL (a} An clement on the unit sphere. (b) Its image —the standard triangle in £, L -planc.

w,¢) = U0, ),

o) = V{0, d)x,

w(0, ) = W' (0, ¢)x, (A10)
where i= 1-18, (U'=N", UP=0, U'=0, U*=N*..), (V' =0, V=N V' '=0..) (W =0 W =0,

W =N ) (v =u Xy =0, X3=w,, X, =u,...)and y ctc. are the nodal displacements. Using (A4) and
(A10), we obtain the following expressions for the strain components inside an element

g, =0, £ = Uk,
ey = (U'+ Vi), ey, =0,
Wi .
ey ={U'+Vcotd+ -+ )x,. & =0,
sin 0
Vl
£y = <——1 + WY — W cot 0) X, £,=0
sin 0 !
d
£y = (.Z.‘_ — W') X, f:’, - V'_\‘,,
sin 0
ea = (U= V)., ga = Wy, (A1)

or written more bricfly
g =E (o), & =Ei(0.0)x,.

where i = 1-6,j = {-18 and £, and E;; are defined from (All).
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From Hooke's law
o' =S§,0.¢)x,. g =85,0.¢)x,. (A1)
inwhichi=1-6, j =1-18. §, = C,E,, and S, = C,E|,. Substituting (Al2) and
du=UN0.¢)x,, o= V(0.¢)0x,. Ow=H"0,¢)x,.
into (A7). we obtain the contribution to virtual work for each element
ox,(k, +Ad, +i*m,)x,. (AL
where

, . c oy UeSy g e VeSs
/\':, = J:[:L (S‘,+SEI_S“)+(!'“SM+_"sj; 0’ +V(.Y;,- cot 0——250,)4-’_05:/4_ s;()‘:

v . WSyl .
+ W(—8, cot 0—283,)+ W),S;, + SI:; 5 ] sin0dodg. (Ald)
v,Ss, _ V.S
d, = [ U'(Sy + 8= S0, =S+ U Su+ —2" T 4 V(S cot 028, ~§.)+ Vi Sy + —2-4
IS sin f sin ¢

. w,s.1 .
+ W (=5, cot0-28,-8,)+ W,§, + :i‘ﬁTfJSIn 0dide. (ALS)

and
n, = j (-U'§, = V'S, = W'S,)sin 0 di dd, (Al6)
Ay

where i, = 1S, Finally, assembling these in the usual manner into global matrices, we arrive at the following
quadratic eigenvitlue problem

(K+iD +A°M)x = 0, (AL7)

where K, D and M are ¥ x N matrices, ¥ being the total number of DOFs, and x the N-dimensional vector of
nodal displacements,

The integrands in the above expressions for the stiffness matrices of an element contain 1/sin ¢ and cot )
which become unbounded when @ approaches zero or x. On the other hand, in many applications, the region
must contain the poles. To avoid numerical difficulties in calculating the clement stiffness matrices we use local
coordinates in such a way that the X ,-axis is always perpendicular to the plane passing through the three corners
of the element, as is shown in Fig. Ata, The computed matrices are then transformed to a global coordinate
system hy appropriate rotations. We use Cartestan and cylindrical global coordinate systems. These two options
are convenient in applying the boundary conditions. The increase in computer time (because of transtormations)
is not significant since we assemble the matrices only once, and the major part of computing time is spent on
calculating the eigenvalues. The accuracy is also affected little because these rotations involve multiplication by
orthogonal matrices, which does not add to the rounding error significantly (Wilkinson, 1965).

In (A13) and (ALS) derivatives Ul ete. appear. To calculate them, one needs to calculate derivatives of the
shape functions V' with respect to @ and ¢. This is done as follows. From (A8) and (A9), N' = N'(0, ) where
¥ = sin (. We need to calealate (CN7/E0), - onn o A0 (CN/CP)y . con - [0 Can casily be seen that these are given

by
N’ onN' N
e = . o5 01 -1
( &0 >¢- ( o0 )- + 9 cos (z‘w ) '
I7N ! ;_ 0 lLV'
L = sin 0] -
"d’ I}~ cunst l"ﬁ ~const

Further, from (AR) and (A9). we can calculate (ON/E0), o nw. 30d (EN/CW)ycomee. 0 the standard fashion
(Zienkiewicz, 1977).

The integrals arc evaluated numerically by Gaussian integration. Equations (A9) map the curvilinear triangle
on the sphere into a standard triangle in the L, L,-plane, in such a way that the six nodes of the element correspond
to the six points on the boundary of the plane triangle as shown in Fig. Alb. At an intcgration station with
coordinates L, and L; (L, = | =L,—L,). from (A9) we calculate ¢ and ¢. All the quantities entering in the
integrands in (A14)-(A16) can then be calculated. Notice that in the case of anisotropic materials. the tensor of
the clastic moduli must be transformed to spherical coordinates at the point (0. ¢) by appropriate rules for the
transformation of fourth order tensors. In addition, it can easily be scen that
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where C(0,p) F(L,. L) is the Jacobian of # and v with respect to L and L. This Jacobian cun be caiculated
easily by using (A9) (Zienkiewicz, 1977). In this way. the integral on the unit sphere is transtormed to an integral
in the L,L.-plane.

Gaussian integration tormulas for triangles are given by Cowper 119731, The maximum number of integration
points per triangle given there is 13 A [3-point formula integrates a pelynomial of degree seven exactly. Although
the integrands in our case are not polynomials. they are smooth functions. However, calculation of norms of the
matrices in (A17) revealed that the norm of M is about 1”4 of that of K and {0, of the norm of D. This shows
that if M is going to have any etfect on the calculutions at all. K must be caleulated at feast to three significunt
tigures. In view of the limitations on the number of integration points. in order to calculate K as accurately ax
desired. one may divide the standard triangle into smaller ones and for cach small triangle use 13 or less integration
stations. Of course, the number of DOFs will not be affected. In our computations we divided 1t into four triangles.
In principle. within machine tolerance. it 1s possible to calculate the stitTness matrices as accurately as one wishes

[t can casily be seen that this isoparametric element 1s not compatible but it becomes so i the hmit when the
grid is refined indefimtely. It is possible to develop an element which s exactly compatible for this problem.
Consider, for example. a spherical triangle with sides that are great circles. Its points can be mapped one-to-one
into a plane triangle the three vertices of which coincide with the vertices of the spherical triangle. Points of
intersection of a ray through the origin with the two triangles are set in correspondence with one another. This
establishes a fully defined one-to-one mapping of the curvilinear triangle into the plane triangle. Now, the areu
coordinates and the shape functions can be introduced inside the plane triangle in the usual manner. Since in this
way, any common boundary of two neighboring elements 1s mapped one-to-one into the same line, the clements
will be compatible. The calculations, however, showed that use of this element does not increase the accuracy. In
fact it even decreascs it slightly ; therefore, we did not use it

Consider, now. the solution of the quadratic cigenvalue problem (A7), In the existing packages (such as
EISPACK for exampie) there is no program that can handle this problem (Parlet, 1984). We used the following
common method to convert the quadratic problem to a lincar one (Wilkinson, 1965, p. 633). Let x = 2x. Equation
(A7) becomes

RX = /DX, (AR

where

N X R [0 1) 0 Tt 1o
MY (l\ l))' '(n _\l) (A1)

and 1is the identity matrig, Equation (AEK) 15 now o standard Tincar eigenvadue problem, but its size is doubled
Tn practice, however, 1t s only necessary to store K, I and M. The mverse of Kis

) TR O'D K
K ' ( ) (A2
\ ] Iy

Therefore, in using any iterative method of cigenvidue caleulation one needs to LU decompose and store only K.
For direet iteration, the algorithm we used is described in Wilkinson (1965, p. 604). Since we are mterested in
caleulating the dominant cigenvalue, which is closest 10 origin, 1.e. with the smallest absolute value, we adupted
the method to inverse iteration. I the dominant cigenvalue ts inugimary, the algorithm gives its real iund imaginary
purts. The accuracy is to any specified tolerance. The smaller the tolerance, the greater the number of sterations
required for convergence. Any inaceuracy in the results has its origin i the discretization finite element approxi-
mation.

By shifting the origin of the A-planc along the real axis, any cigenvalue can be caleulated. The closer the shift
to the desired eigenvalue, the faster the convergence, For the details of the limitations and peculiarities of this
procedure see Wilkinson (1963). For example, if the imaginary part of 4 is large. itis dillicult to pick it up by our
method. However, for most situations of interest, e.g. cracks on bimaterial interfices, this is not the case and our
method will provide an accurite solution.



