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Abstract-A finite element procedure is developed for calculating the order and mode of singularities
at 3D vertices in anisotropic linear elastic solids and composites. It is an extension of the method
of Bazant and Estenssoro. although it differs from the latter in some essential aspects. It is based
on a variational principle derived from the statement of virtual work on the surface of the unit
sphere surrounding the singularity. The sphere is divided into six-node spherical triangles. The
singularities of the spherical coordinates at the poles arc avoided by coordinate transformations.
The three matrices of the quadratic eigenvalue problem are explicitly evaluated and used to advan­
tage. Real and complex eigenvalues and eigenvectors arc calculated by inverse treppen iteration.
With a relatively small mesh. accuracy is to two d~"Cimal places. The method is capable of solving
any 3D and any 2D vcrtex singularity problem with reasonable accuracy and without any assump­
tions with regard to the behavior of displacements in the neighborhood of line singularities. It is
quite robust and stable. Several examples and applications to practical problems arc given. i\
pnx:edure to handle the incompressible case is discussed.

I. INTRODUCTION

Singular asymptoti~ lields in linear elastic materials have been the subject of several inves­
tigations in recent years (Barsoum. 19XX; Benthem. 19XO; Bazant and Estenssoro, 1979;
Somaratna and Ting. 19X6; Ting et al.• 19X5 and references to earlier work ~ontained

therein). A short history of the subject is given by Benthem (1979). The general mathematical
form of singularities has been studied by Kondrat'ev (I96X). For a discussion of topics
related to the application or the finite element method to singularities see Strang and Fix
(1973).

We briefly review the works relevant to the present study. Our concern is primarily
with three-dimensional stress singularities of the form

,-'8(0, ¢; s),

where' is the distance from the singular vertex, the tensor 8(0, ¢; s) determines angular
variation of the stress; 0 and ¢ are the spherical coordinates (see Fig. I) and s is the order
of singularity which can be real or complex. The requirement that the strain-energy should
remain finite in the neighborhood of the vertex gives Re (s) < ~ (in the two-dimensional
case Re (.I') < I ; Re denotes the real part). For displacements to remain finite, one must
have Re (s) < I.

Using a semi-analytic method, Benthem (1977) was able to calculate s at the vertex of
a quarter-infinite cra~k (Fig. 2a). He created a solution as an infinite series in the Papkovich­
Neuber stress functions with unknown eoellieients. Every term in the series satisfied the
boundary conditions on the crack surface. He satistled the boundary conditions on the free
surface (the xy-plane) by setting the Fourier components of the solution equal to zero on
this surface, thereby obtaining an infinite set of equations with zero right-hand sides. From
the condition that the determinant of this set (in trun~.lted form) is zero the value 01'.1' was
calculated. This solution, although very complete. is rather complicated and hard to use.
Later (1980) he solved the same problem by the finite ditTerence method. Even though
Benthem's results were subsequently verified by others and are believed to be accurate,
application of his method to more general problems appears to be difficult.

In an attempt to develop a more general method, Bazant (1974) and Bazant and
Estenssoro (1977. 1979) turned to the finite element technique. They formulated a weak
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variational principle for the angular variation of displacements on a unit sphae ahout till:
singular point and discretized it by dividing the image of the region on the sphere onto the
lllp-plane in four-node quadrilateral tinite delnt.:nts. The convergence of their nutllerical
scheme. however. was rather slow; as a result they resorted to extrapolation to ohtain
accurate answers. Later. Somaratna and Ting (1986) used the same mt.:thod hut with eight­
node quadrilateral elements. These latter authors have reported a much faster rate of
convergence so that extrapolation was not necessary. They have also extended the method
to anisotropic materials.

As will be explained brielly here and becomes clearer in the following sections, Bazant
and Estenssoro's procedure sutTers from certain shortcomings which make its application
to some probkms dillicult. particularly to situations involving several lines of singularity.
Bya line of singularity we mean a line every point of which is a singular point. for exampk
the crack front.

The problem of calculating the order of singularity reduces to an eigenvalue prohlem
for s with the eigenfunction represented by displacements or stresses on the unit sphere
surrounding the vertex. In discretizing. one can divide into finite clements either the IJtp­
plane or. directly. the surface of the unit sphere. If one divides the Olp-plane into uniform
quadrilaterals. like Bazant and Estenssoro. the clement images on the sphere will be non­
uniform regions. where nonuniformity will be greatest at the poles. Consequently. the
effectiveness of elements near the poles will he much less than those at the equator. In other
words the elements will not be homogeneolls. Moreover. all the nodes on the (I = 0 and
() = n: lines in the plane will actually represent a single physical point on the sphere. Whik
the approach of Bazant and Estenssoro works for cases with one line singularity, it is not
applicable to problems with several such lines, especially when the region of interest contains



A numerical variational method for extracting 3D singularities

•

1373

z

(b)

(a)

l801==__-===__-'::::=:;

120

10

(c)

Fig. 2. (al Quarter infinite crack. (b. c) Image of finite element grids in the Olp-plane.

the poles. (An example of such a complex case is a grain vertex, where several anisotropic
crystals with different orientations meet at a point; see Ghahremani e( al., 1990). A single
line of singularity can be arranged so that it passes through the poles and if it is traction
free, it can be treated as a circular with an infinitely small radius. However, this cannot be
done in general.

Besides, since the variational principle contains terms like Iisin 0 which become
unbounded at 0 = 0, and 0 = 71:, for clements containing the poles, accurate numerical
integration is ditllcult. At the poles, the spherical coordinate system itself is singular.

The eigenvalue problem for ;.( == I -s) is quadratic, i.e. of the form (K +;.D+).lM)x =
0, where K, D and M are square, nonsymmetric, banded matrices independent of ;.
(Bazant and Estenssoro, 1979). None of the authors mentioned seem to have evaluated
these matrices explicitly. To calculate ;. by an iterative eigenvalue search, it is necessary to
repeatedly evaluate K + ;.D +;. 2M for various ;. values. Obviously, calculating the matrices
K, D and M once and storing them saves a lot of computations.

Cn our method none of these ditllculties arise. We have directly divided the surface of
the sphere into elements. This is more natural, but it makes the generation of mesh more
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complicated. The mesh generation and refinement is done automatically. To avoid the
singularity of the coordinate system at the poles. for every element we have used a local
spherical coordinate system in such a way that the center of the element is always close to
the point (0 = IT 2, ¢ = IT. 2). Then by appropriate transformations. the matrices with
respect to a global coordinate system are calculated. Finally, we have separated the above
three matrices explicitly. It turns out that it is necessary to decompose only K. The three
nonsymmetric matrices are stored in banded form. This is the only major storage require­
ment throughout the computations.

2. BASIC EQUATIONS

In this section we state and prove a variational principle for asymptotic fields at
singular points which holds for arbitrary nonlinear and anisotropic materials. It reduces to
that of Bazant and Estenssoro (1979) for isotropic elastic materials and to that ofSomaratna
and Ting (1986) for elastic anisotropic materials.

At the vertex where singularity is expected to exist, we introduce spherical coordinates,
as shown in Fig. 1'1. Let (1 be the stress tensor. We look for values of i.( == I -s) such that
separable solutions of the following form can exist

( I )

where ir(O, Ip) is the stress tensor on the unit sphere, i.e. at r = 1.0. In subsequent develop­
ments, only the components of the stress tensor on the unit sphere appear. Therefore, for
convenience, we drop the bars over ir and its components.

Let S be a region on the unit sphere and r its boundary. Rays emanating from the
origin and passing through points on r form a cone (Fig. I b). For the separable stress IIcid
(I). the statement of virtual work over the surface S is

1a"ljl:" dS = (2;' + I)1T(jllj dS+i T(jll, dl,

for virtual displacement field

(2)

(3)

Here (j1l,(O, ¢) is an arbitrary virtual displacement vector on the unit sphere. In the line
integral, T is the traction vector on the external surface of the cone at r = 1.0. The usual
summation rule is used for indices i,J = (1.2.3). Directions I, 2 and 3 correspond to
arbitrary coordinates. The variations i51:,J are obtained by using (3) in the strain displacement
relations for small strains and then putting r = 1.0.

The meaning of each term in (2) can be explained as follows: Consider a thin spherical
shell of material which occupies the region between rand r+dr over S. as shown in Fig.
Ib. Its edge coincides with the cone mentioned above. If (2) is multiplied by dr, its left-hand
side becomes the internal virtual work for this region. On the right-hand side the first term
will represent the external virtual work over the top and bottom faces. and the second term
that on the edges.

We now prove (2). Let us IIrst introduce the usual notation for the stress components
in spherical coordinates

and analogously for strains. where for example f.o<p = f.4 and the engineering definition for
I:o,p is used. Substituting (I) into the equilibrium equations in terms of stresses in spherical
coordinates (Love, 1944, p. 91) and canceling ,..-2, one obtains the three equations of
equilibrium in the form



A numcncal variational mcthod for cJl.tnlcting 3D singularities

I 0(1 S OU6 ,
sine cq, +ao+(J·+l)(1\-0'3-O'z+Gc.cot8::::::0,

I C0'4 OG2 ,
sin (} c!p + ii8 + (J. + 2)0'6 + (U2 -0'3) cot e= 0,

I cO' 3 Ct14 • 2 ., II - 0
--=-[j~ + ---0 + (l + )O's +.G 4 cot rI - •
Sin v C,+, C

1375

(5)

We will use these equations shortly in our proof.
Let the displacements in the r. (I and <P directions be u, t: and Ii', respectively. Ncxt,

using eqn (3) in the strain-displacement relations (Love. 1944, p. 56) and then setting
r = 1. we get

<51: 1 = J.Ju

062 = bu+<5t,.o

Ow
<5£ I = (5u +(k cot {I + ~(i' sm ,

Jl'
c>t: 4 =~J OW /I - 011' cot {}sm ( .

• ,)/(41 • •
c>c,~ = -.-"('}' + (I" - I )chl'

sm

(6)

where

D( ) cJ( )
( ).11 = iJO' (>..~ = tN) .

The lcft-h~lnd side of (2) becomes

In this equation, as usual, we use Green's theorem in the 04>-ptane, transfer the derivatives
from Ou. Jf and air to the O's. and make use of (5). We get

wherc. from (4), the coefficients of /ju, &. and all' in the surface integral are the traction
components on S. The coefficients in the line integral arc

dl/J . dO
T, = 0'6 dl sm 0-0', dl'

dl/J . dO
T.f/ = (J> - sm 0- (J. -• dl ~ dl'

dl/J . dO
T.p = 0'4"dl sm 0- lF 3 dl' (9)

It is easily seen that these are the three components of the traction vector acting on the
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boundary of the cone at r = 1.0. In (9). d( ) d/ is the derivative in the positive direction
with respect to the arc-length along r (Fig. Ib). Equation (2) is proved.

We give an interpretation of the first term in (S). On the top face of the above thin
shell. dS = (r + dr): sin tJ dtJ deb. From (I). (3) and (4). the external virtual work on this
face is

Writing a similar expression for the bottom face with negative sign. setting r = I. adding
the two contributions. and keeping only infinitesimals of the first order. one gets the first
term of (8) multiplied by dr.

Although in our reasoning we used spherical coordinates. it is obvious that (2) holds in
an arbitrary coordinate system. It is also clear that this virtual work statement holds for
nonlinear as well as linear materials. For nonlinear materials. in (I) and (5). i. should be
replaced by;". and in (2). 2i.. by i. + i.'. In particular. for power law materials. where ax I:".

i.' - I = ,,(i. - I).

.1 ~UM[RIl"t\L RESULTS

A dclailed explanation of the discretization of (2) is given in the Appendix. Here
we give four numerical examples: (I) the quarter infinite crack in isotropic materials.
(2) a transversely isotropic double cone inside an infinite transversely isotropic medium.
0) cracks in laminated orthotropie composites and (4) a rectangular grain vertex. where
eight anisotropic crystals meet. In these cases s is real. We only search for the eigenvalues
such that 0 < .\' < I. More applications of this mclhod can he found in Ghahremani et al.
(1990), Many situations involving complex eigenvalues are discussed in Ghahremani
and Shih ( 1990).

3.1. QI/arter i"fi"ite ("rack
A quarter infinite crack is shown in Fig. 2a. Material is in the half-space:: ;,: O. The

crack front is the ::-axis; the crack is in the x::-plane; the .\)·-plane is free. These arc an
infinite number of eigenvalues and eigenvalw:s rdated to rigid body modes which we shall
not discuss. We only consider the first two largest eigenvalues, one of which is greater than
0.5, one less. The smaller one corresponds to symmetric displacements with respect to the
crack plane and was first calculated by Benthem (1977); the other eorn:sponds to the
antisymmetric mode of deformation and was first calculated by Bazant and Estenssoro
(1979). Our finite dement mesh is shown in Fig. 2b. The region 0 ~ () ~ re, () ~ IP ~ re is
divided into spherical triangles. Because of symmetry, one can usc only h.lIf of the mesh
which has 513 degrees of freedom. [t is found that crowding the dements close to the line
singularity increases the accuracy greatly. For the symmetric mode. at y = 0, one must set
1/, = 0, and for the antisymmetrie mode 1/, = 1/: = O. As explained in the Appendix, the
traction boundary conditions at the free surface arc automatically satislied.

In Fig. 3. s is plotted against Poisson's ratio v. Our results. the solid lines. agree with
thc abll\c-mentioned calculations to within I'X•. The values plotted as circles arc taken
from Benthem (19XO).

If one does not take advantage of the symmetry and uses the full mesh, no boundary
conditions need be imposed at all. In calculating the displacements. in order to verify that
the symmetric and antisymmetrie modes actually exist, we used the full mesh and applied
no boundary conditions whatsoever. Free surl~lce displacements (at 1/1 = 0) are shown in
Fig. 4 for \. = 0.3. They are normalized such that the maximum displacement is unity. For
co;nparison. displace~ents for plane strain modes I and \I and for mode [[I arc plotted.
From these. one can conclude that the symmetric mode is very similar to mode I. and the
antisymmctric displacement is a mixture of modes II and III. Displacements of points on the



Fig. 3. Order of singularity at the root of a quarter infinite crack as a function of Poisson's ratio.
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crack plane (at 4J = 90-') are also shown. For the symmetric mode, nonzero displacements at
() = 90; show that the crack front is deflected upwards and compressed.

At the free surface mode III stresses cannot exist. For v = 0 the usual plane strain
solution satisfies the three-dimensional field equations and boundary conditions. Therefore
for v = 0, we must have s = 0.5 exactly. With the mesh shown we obtain s = 0.499. Fur­
thermore, the displacements and stresses should be a linear combination of those of modes
I and II, with II: == O. Our results (not shown here) confirm this accurately.

The question of the range of validity of the corner singularity fields has been studied
by Nakamura and Parks (1988a,b). For through cracks they have shown that these fields
dominate over a distance of about 3 % of the thickness of thin plates.

As mentioned earlier, the present method is capable of solving any plane strain singu­
larity problem as well. For example, in Fig. 2a. for \' = 0.3. putting II: = 0 at rP = 0 (to
suppress mode Itl) we calculated s = 0.50. The displacements were a linear combination of
modes I and II. In order to suppress mode II, we imposed the additional conditions II, = 0
at (0 = 0, 4J = 0) and at (0 = 2n:, 4J = 0). The displacements coincided almost exactly with
that of mode I. Then, instead 01'11, we set II,. = 0 at (0 = 0, rP = 0) and (0 = "2n:. rP = 0). and
obtained the same eigenvalue but mode rr displacements. Inside the material. the largest
eigenvalue is s = 0.5 with three linearly independent eigenvectors. namely the three modes
I, It and III. On the surface. to the first dl)l11inant eigenvalue corresponds a single eigen­
vector, the antisymmetric mode; and to the second eigenvalue, the symmetric.

3.2. DOl/hie ('one

We now turn to anisotropic materials. Consider a transversely isotropic double cone
inside an infinite transversely isotropic material, as shown in Fig. 5. The moduli for the
cone and the infinite material are the same, hut the orientations are different. For the double
cone, the axis of material symmetry is oriented along the X I-axis, while for the mediulll. at
every point it is parallel to the X,X2-plane and passes through the XI-axis. The Illoduli for
transversely isotropic materials can be characterized hy five constants (:x, fl, ~', (),E:) (Walpnk.
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Fig. 5. Singularity order for a transversely isotropic double cone in a transversely isotropic medium.
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1969). For Poisson's ratio 0.3 and Young's modulus 1.0. we denote the isotropic moduli
by C;; and the constants by (~o. Po. 10. 150•eo). Then we vary only ~ and calculate s. Because
of symmetry we analyzed only the region 0 ~ ¢> ~ 5'. All the nodes with identical: were
assigned the same degress of freedom. The displacements in the ¢>-direction were set equal
to zero. The results are shown in Fig. 5.

Because of the axial symmetry. this problem can be solved by other completely different
methods. This was done, for example. in Ghahremani et al. (1990). Since the results of the
two analyses were found to be almost entirely identical. we are convinced that the numerical
scheme works for anisotropic materials as well.

3.3 Laminated composites
The third example was first solved by Somaratna and Ting (1986). It is assumed that

a transverse crack is already present at the free surface of a laminated composite (Fig. 6a).
The shaded area in the x:-plane represents the crack plane. The crack front is along the :­
axis on the interface between the two layers. As in Somaratna and Ting the material of the
layers is T300/5208 graphite/epoxy, which is orthotropic. Referred to the material axis. the
elastic properties are

E 1 = E2 = 1.54 X 106psi.

EJ = 22.0 X 106 psi.

G I2 = GlJ = GJ1 == 0.81 x 106 psi,

where E, are the Young's moduli, G'l' the shear moduli and vi}' the Poisson's ratios (Jones.
1975). The orientation of the material axes relative to xy= coordinates is specified by the
angle fJ which is different for the two layers.
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Fig. 6. (a) Crack in a laminated composite. xy-plane is free. (b) Singularity order.
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The finite element grid is shown in Fig. 2c. No boundary condition was imposed at
all. Figure 6b shows the first two eigenvalues along with the results of Somaratna and Ting.
who calculated only the largest eigenvalue. As in Somaratna and Ting. the strongest
singularity occurs at fJl = 90 and fJ c = 0 . For this case. the free-surface displacements are
shown in Fig. 7. Displacements for (Ill = 90 ./lc = 90 ). (#1 = 0 . Pc = 90) and WI = 0 .
f3~ = 0'). which are not presented here. have the larger eigenvalue corresponding to the
anti symmetric mode and the smaller one to the symmetric mode. The notable exception is
the case shown in Fig. 7 where the larger eigenvalue is associated with the symmetric mode
and the smaller one with the antisymmetric mode. For other values of PI and P, the
eigenvectors are neither symmetric nor antisymmetric.

3.4. Rectangular grain rertex
In the final example we consider a vertex. where eight rectangular grains meet. Figure

8a shows one grain. It is assumed that each grain is a cubic crystal. By taking advantage
of symmetry. we analyzed just the region 0 ~ (/J ~ rr/4. 0 ~ 0 ~ rr/2. The [00)] direction of
the crystal is oriented along the line with direction cosines (y' 3/3. )3/3. ,/3/3). The [100]
direction is taken to be horizontal. The crystals in the other seven grains are oriented
analogously. The symmetry boundary conditions are I\" = 0 at (/J = °and t/J = rr/4. and
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I" == 0 at lJ == rr/2. For cubic materials. there arc two non-dimensional constants, the ani­
sotropy factor/ == 2CH !(C I1 - Cd and l' == Cd(C

"
+ C I1 ). The range of/is (0.1:). Whcn

I == I, the material is isotropic. Figure 8b shows the results. For the orientation chosen. the
stresses arc singul(tr only in thc rangc I < I < CL. It should be noted that in the most
realistic geometry for grain vertex, four grains come to a corner and not eight (Ghahremani
('/ al., 1(90).

4. TilE INCOMPRESSIHLE CASE

The computer program developed here c<ln bc used for valucs of Poisson's ratio <IS
large as 0.49. but it brcaks down for strict incompressibility. We now describe a method
for handling this problem which holds for linear and nonlinear incompressibk materials.

For small strains, incompressibility requircs that thc divergence of thc displacement
field vanishes. For a scparable displaccment field of the form ').11(0. c/J), '-<1"(0, c/J), '-<\1'(0. c/J),
where II, r and I," arc the displaccments in the '. () and c/J directions <It , == 1.0, setting the
divergence equal to zero and solving for 1I gives
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-I ( I)u = ~ r.tJ+rcotO+ ~w'" .}.+ _ Sin [J

This equation can be used to eliminate u from the variational principle altogether.
Application of this simple technique reduces the number of variables by one. a desirable
feature. but in the case of linear materials the resulting eigenvalue problem will be cubic
instead of quadratic. This. however. does not pose any difficulty. A method entirely anal­
ogous to the one explained in the Appendix for the quadratic eigenvalue problem can be
employed. For nonlinear materials. the eigenvalue problem and the equations will be fully
nonlinear.
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APPENDIX: DlSCRETIZAT[ON

Some general remarks about the implementation of the finite clement method were made in the Introduction.
In this section complete details will be given. We consider linear anisotropic materials. For all the cases considered
below. the line integral in (2) vanishes because either the traction vector or the displacements vanish on the
boundary of the cone. From (2). the variational principle simply becomes
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r{[U) + u. -u,(;. + I)IAU+U.OU~ + us90u ~ +[u, cot 8- (;.+ 2)u.]<)I· +U,&· 0 + .U4
9

<5v ~1s . I" . SID .~ . • . SID .~

+[-u.cot8-(A+2)us]<5... +u.<5... o+ ~<5",~}sin9dOdq, = O. (AI)
. Sin u .~

This equation has tenns involving A:. Aand no ;.. These tenns will now be explicitly separated.
From (I) and Hooke's law one can write

for the three displacement components in the r, 8 and q, directions.
Substituting eqn (A2) into the strain~isplacement relations. one gets

,= ,'+M',

where ,e and " have no Aand

£'; = O. £', = u.

£1 = U+l'.~. £: = O.

w
£'; =U+I' cot 8+ ~O' £', = O.

. SID

.., "..
Is" sin8 -.... Is" w,

(A2)

(A3)

g~ = t'. (A4)

Let C be the tensor of elastic moduli. From Hooke's law (I ,. C. == C,' + AC.'. therefore.

where

(I" = C.', (I' = c.'.

Using (A5) in (A I), the principle of virtual work can be written in full

f{.,. , , . " "" " .' (I;+AU',.[t1] +U, -11, +A(t1) +t1, -(I, -(l,)-."t1,J,~u+(t1"+At1.)~uo+-'-I-'~u~,\.. . slOl .~

(A5)

(A6)

(A7)

We divide the region on the unit sphere into finite clements, spheric.lItriangles wilh six nodes (Fig. Ala).
The sides of the lri:angle are in most cases great circles. bUl this is not necessary. When it is convenient. we use
triangles with sides that arc not great circl~'S. The reasons for choosing this clement arc: (I) il h:as been suggested
that higher order elements may increase the accuracy (Bazant and Estenssofl). 1979); (2) it is easier to till a region
with lriangles: (3) shape functions for these elcments are "complete quadr.!tic polynomials" (Zienkiewicz. 1977).

Each element has 18 degrees of freedom (DOFs). For example DOFs 1.2 and 3 corrcspond to u. I' and wat
nodc one. In terms of the are-.! coordinates L,. L: and L .. the shape functions are given by (Zienkiewicz. 1977)

N' == L,(2L,-I). N' =4L:L."

N l -L:(2L:-I). N S =4L,L J ,

N" = L,(2L, -I). N" = 4L, L:.

Using the isoparametric concept and lelling 1/1 = q, sin O. we have

0== N'O,. 1/1 = N'I/I, (i = 1-6).

(A8)

(A9)

where 0, and 1/1, are the values of these variables at the nodes. The summation rule for repeated indices is used
here and throughout this paper. The reason for using 1/1 rather than q, in (A9) is that, by comparison with known
results. it was found that this improves the aceuracy.

The displacements inside a triangle are given by
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(a)

Lz

2

(b)

Xz

Fig. A I. (al An dement on the unit sphere. (hIlts im<lge --the standard triangle in L, L:-plane.

u(l!, </J) = U'(IJ. 'PJx,

dO,'p) = V'(O./P)x,

w(O.</J) = W'«(}.,p)x, (AIO)

where i = I-Ill, (Vi = N'. V: = O. V' = O. V' = N:•.. .), (V' = 0, V: = N'. V' =0, ... ). (W' = O. W: = O.
W' = N' •.. .). (x, = u,. x: = 1',. X, = w,. X. = u:•... j and u, etc. arc the nodal displacements. Using (A4) and
(A 10). we obtain the following expressions for the strain components inside an clement

r.; = 0,

£: = (V' + V~,,)x,.

£'; = ( V' + V' cot () + ~;ii) x,.

£~ = (s~~t.i + W'" - W' cot ()) X"

(
V' )..., .# j

£, = sin () - W x,.

£~ = (V',,- V')x"

or written more briefly

£': = O.

£" = O.

£~ = O.

(All)

where i = 1-6. j = 1-18 and E,; and E;i are defined from (A II).
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From Hooke's law

(1,' = S,;(IJ.(j».t,. (1; = S~(I}.4»x,.

in which i = 1-6. j = 1-18. S" = C,.E~', and S:, = c"E;,. Substituting (A 12) and

Ju = ~'i(O. 4> )Jx,. Jr' = V'(O. 4> )J.t,. J ... = It"(O. 4> )Jx,.

into (A 7). we obtain the contribution to virtual work for each element

where

i[ U'S' Vi S'
k" =. ("(S"+S':,-s;,)+v,,s~,+ :" o~' +V'(SJicotO-:!S~,)+V:oS~+ :" 0"

• ~n ~n

13115

(AI:!)

(AI3)

w'S']+ ~~.;( - ~ cot 0 - :!s;,)+ W:oS~, + si'~ / sin 0 dO dIP. (A 14)

[[
U'')' . _ V'S'

d" = ("'(.5"" +S',,- 5'" -S;,) + U'IIS~i + -::''-/-1'' + V'(S'" cot 0 -:!S~,-S~,)+ Jr"s:, + --c!-'-l/"
OIl' Sin. sin

It" 5' ]+ W'( -s~, cot 0-2S~.,-S;,)+WIIS~'+si~o" sin od/l d,p.

and

m" = 1(-lJ'S'" - v' S~, - lV'S',,) sin /I dll df/>.

(AI5)

(AI6)

wliae i.1 ~ I IS. I:inall)'. assemhling these in the usual manner into glohal matrices. we arrive at the following
quadrat,.: eil:envaltle prohlcm

(AI7)

where K. U and \1 arc N x N matri.:es. N heing the total numhcr of DOl's. and x the N-dimensional ve.:tor of
nod;d displa.:ements.

The intel:rands in the ahove eJlpressions for the stiffness matrices of an element contain I/sin II and cot /I
whi.:h become unbounded when /I approaches zero or n. On the other hand. in many applications. the region
must .:ontain the poles. To avoid numeri.:;tl dillkulties in calculating the element stiffness matrices we usc local
comdinah:s in such a way that the X :-axis is always perpendicular to the plane passing through Ihe three .:orners
of the clement. as is shown in Fig. A Ia. Thc .:omputed matrices arc then tr;lIlsformed to a gloh;d coordinate
') stcm hy appropriate rotations. We use Cartcsian and cylindrical glohal .:oordinate systems. These tWll options
arc convcnicnt in applying the houndary conditions. The increase in computer time (hccausc of transt:"lrmations)
is no( signili<:ant since wc a"cmhle the matri<:cs only once. and the major part of computing time is spent on
<:alculating the cigenvalues. Thc aecumey is also affected little hccausc these rotations involve multiplication by
orthogonal matrices. which docs not add to the rounding error signilicantly (Wilkinson. 1965).

In (A 1.1) and (A 15) dcriv;llives VII etc. appear. To calculate them. one needs to calculate derivatives of the
shape functions N' with respect to 0 and ,p. This is done as follows. From (A8) and (A9). N' = N'(O• .p) where
'" = fP sin fl. We need to calculah: (,'N'/f'O)"_,,.n., • and (f'N'/t't/»o.,un., . In can easily be seen thaI these arc given
hy

Further. from (All) and (A9). we c;m calculate (r7N'/f'/I)~_,un,'_ and (iJN'I('.p)"_ron." in the standard fashion
(Zienkiewicz. 1'177).

The integrals arc evaluated numerically by Gaussian integration. Equations (A9) map the curvilinear tri;ll1gle
on the sphere into a standard tri;ll1gle in the l.,l.,-plane. in such a way that the six nodes of the clement correspond
[0 the si, POIllIS on the hnundary of the pl;lIle triangle ;IS shown in Fig. A Ib. At an integration st;llion with
coordinates l., and L, (L, = I-L,-L,). from (A9) we calculate 0 and 4>. All the quantities entering in the
integrands in (AI4)-(A 16) can then be calculated. Notice that in the case of anisotropic materials. the tensor of
the clastic moduli must be transformed to spherical coordinates al the point (0.4» by appropriate rules for the
transformation of fourth order tensors. In addition. it can easily be seen that
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,'11 1.1/11
dl. dl.:.

, L .. L:I

where "~I iI. riJ ) "~I L ,. L,) is the hCI)hlan of II and 1/1 with respect tl' I. .Ind L:. Thl' hcohlan c,m n..: caiculat..:d
easily by using (A9) (Zienki..:wicz. 19(7). In this way. the Integral on th..: unit sph..:r..: is transform..:d to an Int..:gral
in the L I L ,-plane.

Gaussian mtegration formulas for triangles are gi\t,n by Cowper I 19-31. The rna ,imum numh..:r nf integratlnn
points per triangle given th..:re is 13. :\ 13-point formula integrates a pol\ nl)miall,f degree s..:\en c,a(\ly A!thl)ugh
the integrands m our case are ne)t polynomials. they arc smooth fun,tII)ns. Hl)WC\er. calculatllln 1'1' norms of th..:
matrices in (A 17) rcvealed that the norm of \, is ahout I"" nf th,ll 1)1' K and 10"" 1'1' the norm of D. ThiS shows
that if" is gl'ing to have any effcct on the calculcLtil)ns at ,iiI. K must h..: calculatcd at least tIl three S1gnlticant
ligures. In view of the limitations on the number of integratll)n puin!>. In order to calculate 1\ as accuratdy as
desired. one may divide the standard triangle intl) smalkr I'nes and fl)r c",'h small triangk usc t, or kss mtegration
statilHls. Of course. the number 1'1' DOFs will not be affccted. In our cumputatinns we divided It intn fnur tnangks.
In principk. withm machine tolerance. it IS possible to calculate thc stltfncs, matrice' ,IS accuratc1v as nne Wishes

It can easily be seen that this isoparametric dem..:nt IS not CIHllp"tlble but it b,,:cI)mes 51' In thc limit "hcn the
grid is refined ineidillltdy. It is possibk to devek)p an clement \\ hlch IS e,actly compatible fl)r thiS pwbkm
Consider. for example. a spherical triangle with sides that arc great circles. It, points can be mapped one·to-l)nC
into a plane triangle the three vertices of which cnin,lde with the \erlICes of thc sphencal tnangle Pnlnts nf
intersectIon of a ray through the origin with the two triangle, arc set In cnrrespllndence with ,'ne anllther. ThIS
establishes a fully defined one-to-one mapping of the cuniline'lr tnangle intn the plane tri,mgle NllW. the ar"l
coordinates and the shape functions can he introduced inside the plane triangle in the usual manner. Since in this
way. any common houndary of two neighboring clements is mapped l1l1e·W-one inw the "1mI' 1mI'. the clements
will he eompatihle. The ealculations. however. showed that usc of this clement docs nnt increase the accuracy. In
fact it even deereases it slightly; therefore. we did not usc it.

Consider. now. the solution of the quadratic elgenvaluc problem (:\ 17). In the existmg pacbges (Such as
EISPACK for example) there is no program that can handk this problem (Parlet. 19l\~). We used the following
common method to convert the quadratic problem to a linear one (Wilkln,on. 1965. p. 633). Let x' ~ i.x. Equation
(A (7) becomes

K:\ .~ ilh.

where

:\ - (:.).
1 0 " G o )K (1\ n). ()

-\1

and liS Ih~ id~ntity m:llru. I':qn:ltion (1\ IX) is now a st'\Illbrd lin"::lr "l~l'nv,tlu~ l'rohknl. but Its si/~ is d'"lbbl
In l'r:lctlc~. howl,,~r. It IS only n~cessary to stor~ 1\. I) and \1. Th~ 1I1\cr,~ of K is

-Iv: 'I)

I
K ')

o ,
(:\201

Th~rcfor~. in using any it<:rative mcthod of ~ig..:nvalu~calcubtlon on~ n~~ds to LU d~cumpos~ and stmc only Iv:.
ror dir~ct iteration. the algorithm we used is tkscrih..:d in Wilkinson (I %5. p. 60~). Since we ar~ Inlcr~st~d In
calculating th~ dominant ~ig~nvalue. which is elos~st to origin. l.~. IV IIh th~ smallest absolute value. \\~ adapt~d

th~ method to invers~ it~ration. Ir th~ dominant eigenvalu~ is imaginMY. th~ algorithm giws its r~al and imaginary
parts. Th~ accuracy's to any specified tolerance. The smalkr the tukranc~. the gr~alcr th~ number of Ilcrations
n:ljuired for conv~rg~nce. Any inac~uracy in lh~ r~sults has its origin in th~ discr~ti/atilln lillllc elem~nt appro.xl·
matiun.

By shifting the urigin of the i.-plane along th..: real axis. any ~ig~nvalu~ ~:ln b~ calculat~d The elmer lh~ shIl'l
to the desir~d eigenvalue. the faster the eonv~rgence. ror the d~talls or the limitatiuns and pcculjMitl~s of this
procedure sec Wilkinson (1965). Fur example. if the imaginary part uf i. is large. it is diliicult to pick it up by uur
method. Ilowever. for must situations of inter~st. ~.g. eracks on bimal~nal int..:rfaces. this IS not th~ cas~ and ()ur
methud will provide an accurate solution.


